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Abstract—In this paper, we introduce two types of query
evaluation problems on uncertain graphs: expectation query eval-
uation and threshold query evaluation. Since these two problems
are #P-complete, most previous solutions for these problems are
based on naive Monte-Carlo (NMC) sampling. However, NMC
typically leads to a large variance, which significantly reduces its
effectiveness. To overcome this problem, we propose two classes
of estimators, called class-I and class-II estimators, based on the
idea of stratified sampling. More specifically, we first propose
two classes of basic stratified sampling estimators, named BSS-
I and BSS-II, which partition the entire population into 2r and
r+1 strata by picking r edges respectively. Second, to reduce the
variance, we find that both BSS-I and BSS-II can be recursively
performed in each stratum. Therefore, we propose two classes of
recursive stratified sampling estimators called RSS-I and RSS-
II respectively. Third, for a particular kind of problem, we
propose two cut-set based stratified sampling estimators, named
BCSS and RCSS, to further improve the accuracy of the class-
I and class-II estimators. For all the proposed estimators, we
prove that they are unbiased and their variances are significantly
smaller than that of NMC. Moreover, the time complexity of all
the proposed estimators are the same as the time complexity
of NMC under a mild assumption. In addition, we also apply
the proposed estimators to influence function evaluation and
expected-reliable distance query problem, which are two instances
of the query evaluation problems on uncertain graphs. Finally,
we conduct extensive experiments to evaluate our estimators, and
the results demonstrate the efficiency, accuracy, and scalability
of the proposed estimators.

I. INTRODUCTION

Uncertain graph management and mining has attracted
much attention in recent years [1], [2], [3], [4]. In a widely-
used uncertain graph model, each edge is associated with a
probability representing the likelihood of the existence of an
edge, and the existence of an edge is independent of that of any
other edge [2], [3]. This model allows us to study the uncertain
graph problems via the possible graph semantics [1], [2], [3].
Here a possible graph G is an instance of the uncertain graph
G, which is generated by sampling each edge in G. Fig. 1(a)
depicts an uncertain graph G and Fig. 1(b) illustrates a possible
graph G of G. Such an uncertain graph model is very useful
to model the interaction between two nodes with uncertainty.
There are many network-related applications that inherently
involve uncertainty. In protein-protein interaction networks,
the interaction is typically predicted by statistical models [5],
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[6], thereby the existence of an interaction is associated with
a probability. In communication networks, the link is often
associated with a failure probability [7]. In social networks,
the social influence between two nodes is very often modeled
by an influence probability [8], [9].

In uncertain graph management, a fundamental problem
is to evaluate the queries efficiently and accurately. In this
paper, we formulate two types of query evaluation problems:
the expectation query evaluation and the threshold query
evaluation. Given an uncertain graph G, a query q, and a
query evaluation function φq(G) defined on the possible graph
G, the expectation query evaluation problem is a problem of
evaluating the expected value of φq(G) over all the possible
graphs of G. The threshold query evaluation is to evaluate the
probability of an event that the value of φq(G) is greater (or
less) than a given threshold δ. Many applications on uncer-
tain graph management can be formulated as the above two
query evaluation problems. For instance, the classic network
reliability problem [10] is an instance of the expectation query
evaluation problem, where the query is a set of k nodes and the
query evaluation function is a binary function used to evaluate
the connectedness of the induced k-subgraph. The expected-
reliable distance query problem introduced in [2] is a special
instance of the expectation query evaluation problem, where
the query is two given nodes and the evaluation function is
the length of the shortest path between the query nodes. The
influence function evaluation problem studied in the influence
maximization literature [8], [11] is also an instance of the
expectation query evaluation problem, where the query is a set
of seed nodes and the query evaluation function is the number
of nodes that can be reachable from the seed nodes. The
distance-constraint reachability problem [3] is an instance of
the threshold query evaluation problem, where the query is two
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nodes, the threshold is the distance-constraint, and the query
evaluation function is a binary function used to evaluate the
reachability between two nodes subject to distance constraint.

In general, all the above mentioned expectation and thresh-
old query evaluation problems are known to be #P-complete,
thus there is no polynomial algorithm to exactly solve them
unless P=#P. As a result, most existing algorithms for query
evaluation problems are based on naive Monte-Carlo (NMC)
estimator [10], [2]. Specifically, the NMC estimator first draws
N possible graphs, and then computes the query evaluation
function on each possible graph. Finally, it takes the average
value of the query evaluation function as the estimator. How-
ever, as discussed in [10], [3], the NMC estimator typically
results in a large variance. Therefore, to achieve a good
accuracy, the NMC estimator has to pick a large number of
samples (possible graphs). In an uncertain graph, getting a
sample has to flip m coins to determine all the m edges of the
graph. Thus, the NMC estimator is very expensive to obtain a
good approximation for the query evaluation problems.

To reduce the variance of the NMC estimator, in this
paper, we propose two classes of Monte-Carlo estimators,
named class-I and class-II estimators, based on the idea of
stratified sampling. Specifically, for the class-I estimators, we
first propose a basic stratified sampling estimator called BSS-
I. BSS-I partitions the probability space Ω (the set of all the
possible graphs) into 2r subspaces by enumerating all the
statuses (0 or 1) of r selected edges1. Let each subspace
be a stratum. Then, BSS-I draws samples separately from
each stratum. By carefully allocating the sample size for each
stratum, we show that the variance of the BSS-I estimator
is smaller than that of NMC. Moreover, we find that BSS-
I can be recursively applied in each stratum, and thereby we
propose a recursive stratified sampling estimator, named RSS-I
estimator. Since RSS-I recursively reduces the variance in each
stratum, its variance is significantly smaller than that of BSS-I.
For the class-II estimators, we also propose a basic stratified
sampling estimator (BSS-II) and a recursive stratified sampling
estimator (RSS-II). The idea of the class-II estimators is similar
to the idea of the class-I estimators. The major difference
is the stratification method used. In particular, for the class-
II estimators, we develop a new stratification method. This
new stratification method splits the probability space Ω into
r+1 strata by selecting r edges. Compared to the stratification
method used in the class-I estimators, the advantage of this
method is that we can finely tune the number of strata of the
class-II estimators by tuning the parameter r because it only
produces r + 1 strata. Both the class-I and class-II estimators
are shown to be unbiased and their variances are significantly
smaller than that of NMC. Additionally, an important property
of both class-I and class-II estimators is that they have the same
time complexity as NMC under a mild assumption, satisfying
in most real-world applications. That is to say, the class-I and
class-II estimators improve the accuracy of the NMC estimator

1Here the status of an edge is 1 denoting the edge exists in the possible
graph, and 0 otherwise. Thus, for r edges, there are 2r different cases.

without scarifying efficiency.
The proposed class-I and class-II estimators are very general

which can be used as a building block for any query evaluation
on uncertain graph problem. However, these methods do not
capture the graph structure information and the property of
the query evaluation function as well. To capture these in-
formation, we further propose a basic cut-set based stratified
sampling estimator and a recursive cut-set based stratified
sampling estimator, called BCSS and RCSS respectively, for
a particular kind of query evaluation problem where the
query evaluation function has a cut-set property. The detailed
definition of cut-set can be found in Section V. We prove that
both BCSS and RCSS are unbiased and their variances are
significantly smaller than that of NMC. Furthermore, in many
applications, we show that the time complexity of BCSS and
RCSS estimators are the same as that of NMC. In addition,
we apply the proposed estimators to the influence function
evaluation problem and the expected-reliable distance query
problem which are two instances of our query evaluation prob-
lems. Finally, we perform extensive experiments to evaluate
the proposed estimators. The results show that our class-I and
class-II estimators significantly outperform the state-of-the-art
estimator. Moreover, we find that the cut-set based estimators
can significantly improve the accuracy of the class-I and class-
II estimators. The results also show that all of the proposed
estimators scale linearly w.r.t. the graph size, thus all of them
can be used to handle large graphs.

II. PROBLEM FORMULATION

Consider an uncertain graph G = (V,E, P ) with |V | = n
and |E| = m, where V and E denote the set of nodes and
edges respectively. P is a set of probabilities representing the
likelihoods of the existence of edges, i.e., pe denotes the proba-
bility of e ∈ E. In this paper, we adopt a widely-used uncertain
graph model where the existence of an edge is independent
of that of any other edge [2], [3]. Let G = (VG, EG) be a
possible graph which is obtained by sampling each edge e in
G following the probability pe. Obviously, V = VG, EG ⊆ E,
and the probability of G is given by

Pr[G] =
∏

e∈EG

pe
∏

e∈E\EG

(1− pe). (1)

Consider an example in Fig. 1. Fig. 1(a) shows an uncertain
graph with 5 nodes and 8 edges and Fig. 1(b) illustrates a
possible graph G of G with probability 0.001944.

Given an uncertain graph G, a query q, and a query
evaluation function φq(G) defined on the possible graph G.
We define two types of query evaluation problems as follows.

Definition 2.1: (Expectation query evaluation) The ex-
pectation query evaluation problem is a problem of computing
the expected value of φq(G) over all the possible graphs, which
is given by

Φq(G) =
∑

G∈Ω
Pr[G]φq(G), (2)

where Ω denotes the set of all possible graphs of G.
Definition 2.2: (Threshold query evaluation) Given a

threshold δ, the threshold query evaluation problem is a
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problem of calculating the following expected value

Iq(G) =
∑

G∈Ω
Pr[G]Iq(G), (3)

where Iq(G) is an indicator variable. More specifically, Iq(G)
is defined by

Iq(G) =

{
1, if C (φq(G), δ) = 1
0, otherwise

, (4)

where C (φq(G), δ) is a binary comparison function.
Note that the comparison function C (φq(G), δ) in Eq. (4)

is used to compare the query evaluation function φq(G) with
the given threshold δ. For example, the comparison function
can be a “≤” function, i.e., C (φq(G), δ) = 1 if φq(G) ≤ δ,
and C (φq(G), δ) = 0 otherwise.

As discussed in Section I, many applications of uncertain
graph management and mining problems, such as network
reliability estimation [10], expected-reliable distance query [2],
distance-constraint reachability computation [3] and influence
function evaluation [8], [11], can be formulated as the above
two query evaluation problems. In general, all the above
mentioned query evaluation problems are known to be #P-
complete, thus there does not exist a polynomial algorithm
to exactly solve them unless P=#P. Hence, most existing
algorithms for these problems are based on a naive Monte-
Carlo (NMC) estimator [10], [2], [8], [11]. In the rest of this
paper, we mainly focus on the expectation query, and similar
techniques can be easily generalized to the threshold query.

To estimate the expectation queryΦq(G), the NMC algorith-
m first draws N possible graphs denoted by G1, G2, · · · , GN

from G. Then, for each possible graph Gi, the NMC algorithm
calculates the query evaluation function φq(Gi). Finally, the
NMC estimator (denoted by Φ̂NMC ) is obtained by taking
the mean of φq(Gi) (i = 1, 2, · · · , N ), i.e., Φ̂NMC =
∑N

i=1 φq(Gi)/N . The NMC estimator is unbiased and its
variance is given by

var(Φ̂NMC ) = [
∑

GP ∈Ω Pr[GP ]φq(G)2 − Φq(G)2]/N. (5)

Assume that computing φq(Gi) takes O(M) time. Then,
we can easily derive that the time complexity of NMC is
O(N(m+M)).

An important metric to evaluate the accuracy of the Monte-
Carlo based algorithm is the mean squared error (MSE) which
is denoted by E[(Φ̂q(G)−Φq(G))2], where Φ̂q(G) denotes an
estimator of Φq(G) by the Monte-Carlo based algorithm. By
the so-called variance-bias decomposition [3], this metric can
be decomposed into two parts.

E[(Φ̂q(G)−Φq(G))2] = var[Φ̂q(G)] + [E[Φ̂q(G)]− Φq(G)]2, (6)

where E[Φ̂q(G)] and var[Φ̂q(G)] denote the expectation and
variance of the estimator Φ̂q(G) respectively. If the estimator
is unbiased, then the second term in Eq. (6) will be vanished.
Therefore, the variance of an unbiased estimator is the only
indicator for evaluating the accuracy of the estimator.

As discussed in [10], [3], the NMC estimator typically
results in a large variance, which significantly reduces its
accuracy. An effective approach to improve the accuracy of

TABLE I
STRATUM DESIGN OF CLASS-I ESTIMATORS

Edges e1 e2 e3 · · · er er+1 · · · em Prob. space
Stratum 1 0 0 0 · · · 0 ∗ · · · ∗ Ω1

Stratum 2 1 0 0 · · · 0 ∗ · · · ∗ Ω2

Stratum 3 0 1 0 · · · 0 ∗ · · · ∗ Ω3

· · · · · · · · ·
Stratum 2r 1 1 1 · · · 1 ∗ · · · ∗ Ω2r

NMC is to reduce its variance. To that end, in the following
sections, we shall propose several new estimators based on
stratified sampling [12] without sacrificing efficiency.

III. NEW CLASS-I ESTIMATORS

To reduce the variance of NMC, in this section, we pro-
pose two new estimators for expectation query evaluation. To
distinguish the class-II estimators which we will present in
Section IV, we refer to the new estimators proposed in this
section as the class-I estimators. More specifically, we will
present a new basic stratified sampling estimator, named BSS-
I, in Section III-A, and propose a new recursive stratified
sampling estimator, named RSS-I, in Section III-B.

A. Basic stratified sampling (BSS-I)

Unlike NMC which draws a sample (a possible graph) from
the entire population (all the possible graphs), the stratified
sampling method [12] first divides the population into several
disjoint groups called strata, and then independently picks
separate samples from these groups. As a commonly used
technique for reducing variance in sampling design [12], there
are two key technical challenges in stratified sampling: stratifi-
cation, which is a process for partitioning the entire population
into disjoint strata, and sample allocation, which is a procedure
to determine the sample size that needs to be drawn from each
stratum. Below, we will present our stratification and sample
allocation methods.

Stratification: Let ei (i = 1, · · · ,m) be an edge in an
uncertain graph G. First, we choose r edges (e1, · · · , er) and
determine their statuses (0 or 1), where r is a small number.
For the rest m−r edges, we set their statuses to ∗ which means
that “their statuses are undetermined”. Note that this process
partitions the entire probability space Ω (i.e., the set of all
possible graphs) into 2r subspaces Ω1, · · · ,Ω2r . Second, we
let each subspace be a stratum. This is because Ω1, · · · ,Ω2r

are disjoint sets and Ω =
⋃2r

i=1 Ωi, thus each subspace is
indeed a valid stratum. The idea of our stratification method
is illustrated in Table I.

Let T = (e1, e2, · · · , er) be the set of selected r edges, and
Xi = (Xi,1, Xi,2, · · · , Xi,r) be the status vector corresponding
to the selected r edges in Stratum i, where Xi,j = 0 represents
that the edge ej is failed, and Xi,j = 1 denotes that the edge ej
exists. For example, for Stratum 1 in Table I, the status vector
is X1 = (0, 0, · · · , 0), which means that all the selected r
edges are failed. In other words, all the possible graphs in Ω1

do not include the edges in T . The probability of a possible
graph in Stratum i (i = 1, · · · , 2r) is given by

πi = Pr[GP ∈ Ωi] =
∏

ej∈T∧Xi,j=1

pj
∏

ej∈T∧Xi,j=0

(1− pj). (7)
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In our stratification approach, a question that arises is
how to select the r edges for stratification. As shown in the
experiments, the edge-selection strategy for choosing r edges
significantly affects the performance of the estimator. One
straightforward strategy is to randomly pick r edges from the
edge set E. We refer to this edge-selection strategy as the
random edge-selection strategy (RM). With the RM strategy,
the selected r edges may not directly contribute to compute the
query evaluation function φq(G). For example, assume that the
query evaluation function φq(G) denotes the number of nodes
in the possible graph G that are reachable from the query node
q (i.e., this query evaluation problem is an instance of influence
function evaluation problem [8], [11]). Further, we suppose
that the uncertain graph G has two connected components and
the query node q is in the first component. If all the selected
r edges are in the second component, then these r edges
make no contribution to compute φq(G). This may reduce the
performance of BSS-I. To avoid such a problem, we introduce
a heuristic edge-selection strategy based on the BFS (breadth-
first-search) visiting order of the edges. To estimate Φq(G), we
first invoke a BFS algorithm starting from the query node q
to obtain the first r edges according to the BFS visiting order
of the edges. Then, we use these r edges for stratification.
We refer to such edge-selection strategy as the BFS edge-
selection strategy. Obviously, according to the BFS strategy,
the selected edges have direct contribution to calculate φq(G).
It is important to emphasize that the RM strategy is very
general which can be used for any query evaluation problems,
while the BFS edge-selection strategy only work well on a
class of query evaluation problems where the query evaluation
function can be calculated by the BFS (breadth-first-search)
algorithm, such as the reachability query [3], shortest path
query [2], network reliability estimation [10], and influence
function evaluation [8].

The BSS-I estimator: Let N be the total number of samples,
Ni be the number of samples drawn from Stratum i (i =
1, 2, · · · , 2r), and Gi,j (j = 1, 2, · · · , Ni) be a possible graph
sampled from Stratum i. Then, BSS-I is given as follows.

Φ̂BSSI =
∑2r

i=1
πi

1

Ni

∑Ni

j=1
φq(Gi,j), (8)

where πi is defined in Eq. (7). The following theorem shows
that Φ̂BSSI is an unbiased estimator of Φq(G). Due to space
limit, all the proofs of this paper are omitted and they can be
found in our technical report [13].

Theorem 3.1: E(Φ̂BSSI) = Φq(G).
Let σi be the variance of the sample in Stratum i. Since

the samples are independently drawn by the basic stratified
sampling algorithm, thus the variance of BSS-I is

var(Φ̂BSSI) =
∑2r

i=1
π2
i σi/Ni. (9)

Sample allocation: As shown in Eq. (9), the variance of BSS-
I depends on the sample size of all strata, i.e., Ni, for i =
1, 2, · · · , 2r. Thus, the question is how to allocate the sample
size for each stratum i (i = 1, 2, · · · , 2r) so as to minimize

Algorithm 1 BSS-I (G, N , q, r)
Input: An uncertain graph G = (V,E,P ), sample size N ,

a query q, and the stratification parameter r.
Output: The BSS-I estimator Φ̂.

1: Φ̂← 0;
2: Choose r edges from E by an edge-selection strategy;
3: for i = 1 to 2r do
4: Let Xi be the status vector of Stratum i;
5: Compute πi by Eq. (7);
6: Ni ← [πiN ];
7: t← 0;
8: for j = 1 to Ni do
9: Flip m− r coins to determine the rest m− r edges;

10: Let Yj be the status vector of the rest m− r edges;
11: Append Xi to Yj to generate a possible graph Gj ;
12: Compute φq(Gj);
13: t← t+ φq(Gj);
14: t← t/Ni;
15: Φ̂← Φ̂ + πit;
16: return Φ̂;

the variance of BSS-I, i.e., var(Φ̂BSSI). Formally, the sample
allocation problem is formulated as follows.

min var(Φ̂BSSI) =
∑2r

i=1 π
2
i

σi
Ni

s.t.
∑2r

i=1 Ni = N.
(10)

By applying the Lagrangian method, we can derive the optimal
sample allocation strategy which is given by

Ni = Nπi
√
σi/

∑2r

i=1
πi
√
σi, (11)

for i = 1, · · · , 2r. From Eq. (11), the optimal allocation needs
to know the variance of the sample in each stratum, i.e. σi, for
i = 1, · · · , 2r. Unfortunately, such variances are unavailable
in our problem. However, if we set the sample size of Stratum
i to πiN (proportional sample allocation), then the variance of
BSS-I will be no larger than the variance of NMC.

Theorem 3.2: If Ni = πiN , var(Φ̂BSSI) ≤ var(Φ̂NMC).
Equipped with the stratification and sample allocation meth-

ods, we outline the BSS-I algorithm in Algorithm 1. Assume
that computing the query evaluation function for each possible
graph takes O(M) time (line 12). Then, one can easily derive
that the time complexity of Algorithm 1 is O(N(m + M))
which is equal to the time complexity of the NMC algorithm.

B. Recursive stratified sampling (RSS-I)

Recall that BSS-I splits the entire set of possible graphs
into 2r subsets. We observe that BSS-I can be recursively
applied into any subsets. Based on this observation, we develop
a recursive stratified sampling estimator (RSS-I). The RSS-I
algorithm is given in Algorithm 2. RSS-I recursively partitions
the sample size N to Ni = πiN (i = 1, 2, · · · , 2r) to estimate
Φq(G) in Stratum i (line 9-19 in Algorithm 2). Note that since
BSS-I is unbiased, RSS-I is also unbiased. Moreover, RSS-
I reduces the variance in each partition, thus the variance of
RSS-I is no larger than the variance of BSS-I.

Theorem 3.3: Let var(Φ̂RSSI) be the variance of RSS-I,
then var(Φ̂RSSI) ≤ var(Φ̂BSSI).
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The RSS-I algorithm terminates until the sample size is
smaller than a given threshold (τ ) or the number of unsampled
edges is smaller than r (line 2). When the terminative condi-
tions of the RSS-I algorithm are satisfied, we perform a naive
Monte-Carlo sampling to estimate Φq(G) (line 3-7). Similar
to BSS-I, the partition approach in RSS-I also relies on the
edge-selection strategy (line 9). Likewise, for the general query
evaluation problem, we can use the random edge-selection
(RM) strategy. For the query evaluation problems in which the
query evaluation function can be solved by the BFS algorithm,
we recommend to use the BFS edge-selection strategy.

We use the recursive tree technique [14] to analyze the time
complexity of Algorithm 2. For sampling a possible graph,
Algorithm 2 needs to traverse the recursive tree from the root
node to the terminative node. Here the terminative node is a
node in the recursive tree where the terminative conditions of
the recursion satisfy at that node, i.e., N < τ or |E2| < r holds
in Algorithm 2. Let d̄ be the average length of the path from
the root node to the terminative node. Then, at each internal
node of the path, the time complexity is O(r). Suppose that
the total number of such paths is K . Then, the algorithm takes
O(Kd̄r) time at the internal nodes of all the paths. Note that K
is bounded by the sample size N , and d̄ is a very small number
w.r.t. N . More specifically, we can derive that d̄ = O(log2r N),
which is a very small number. For example, assume that r = 5
and N = 100, 000, then we can get d̄ ≈ 3.3. For all the
terminative nodes, the time complexity of the algorithm is
O(N(m+M)). This is because the algorithm needs to sample
N possible graphs in total over all the terminative nodes, and
for each possible graph the algorithm has to compute the query
evaluation function which takes O(M) time. Since O(Kd̄r) is
dominated by O(Nm), the time complexity of Algorithm 2 is
O(N(m+M) +Kd̄r) = O(N(m+M)).

IV. NEW CLASS-II ESTIMATORS

In this section, we propose two new stratified sampling
estimators, named class-II basic stratified sampling estimator
(BSS-II) and class-II recursive stratified sampling estimator
(RSS-II). Below, we introduce these estimators in detail.

A. Basic stratified sampling (BSS-II)

Stratification: In BSS-II, the new stratification method s-
plits the probability space Ω into r + 1 various subspaces
(Ω0, · · · ,Ωr) by choosing r edges. Specifically, for Stratum
0, we set the statuses of all the r selected edges to “0”, and
for Stratum i (i �= 0), we set the status of edge i to “1”,
the statuses of all the previous i− 1 edges (i.e., e1, · · · , ei−1)
to “0”, and the statuses of the rest of edges to “∗” denoting
that their statuses are undetermined. Unlike the stratification
method used in BSS-I, this new stratification approach allows
us to set r to be a relatively large number, such as r = 100.
Furthermore, we can finely tune the stratification parameter r
because it only generates r+1 strata. However, for the BSS-I
estimator, r leads to 2r strata, thus it is hard to tune the number
of strata of the estimator. The stratum design method of the
BSS-II estimator is depicted in Table II.

Algorithm 2 RSS-I (G, E1, E2, X , N , q, r, τ )
Input: An uncertain graph G = (V,E,P ), the set of

sampled edges E1, the set of unsampled edges E2,
sample size N , a query q, and parameters r and τ

Output: The RSS-I estimator Φ̂.

1: Φ̂← 0;
2: if N < τ or |E2| < r then
3: for j = 1 to N do
4: Flip |E2| coins to generate a possible graph Gj ;
5: Compute φq(Gj);
6: Φ̂← Φ̂ + φq(Gj);
7: return Φ̂/N ;
8: else
9: Select r edges from E2 by an edge-selection strategy;

10: Let T be the set of selected edges;
11: for i = 1 to 2r do
12: Y ← X {Recording the current status vector X};
13: Let Xi be the status vector of set T in Stratum i;
14: Append Xi to Y ;
15: Compute πi by Eq. (7);
16: Ni ← [πiN ];
17: μi ← RSS-I (G, E1 ∪ T , E2\T , Y , Ni, q, r, τ );
18: Φ̂← Φ̂ + πiμi;
19: return Φ̂;

TABLE II
STRATUM DESIGN OF CLASS-II ESTIMATORS

Edges e1 e2 e3 · · · er er+1 · · · em Prob. space
Stratum 0 0 0 0 · · · 0 ∗ · · · ∗ Ω0

Stratum 1 1 ∗ ∗ · · · ∗ ∗ · · · ∗ Ω1

Stratum 2 0 1 ∗ · · · ∗ ∗ · · · ∗ Ω2

Stratum 3 0 0 1 · · · ∗ ∗ · · · ∗ Ω3

· · · · · · · · ·
Stratum r 0 0 0 · · · 1 ∗ · · · ∗ Ωr

In Table II, each stratum (Stratum 0, Stratum 1, · · · , Stratum
r) corresponds to a subspace (Ω0,Ω1, · · · ,Ωr). For any i �= j,
we have Ωi ∩ Ωj = ∅. Below, we show that

⋃r
i=0 Ωi = Ω.

Let T = (e1, e2, · · · , er) be the set of r selected edges and
pj (j = 1, · · · , r) be the corresponding probability, then the
probability of a possible graph in Stratum i is given by

π′
i = Pr[GP ∈ Ωi] =

{ ∏r
j=1 (1− pj), if i = 0

pi
∏i−1

j=1 (1− pj), otherwise
(12)

The following theorem implies that
⋃r

i=0 Ωi = Ω.
Theorem 4.1:

∑r
i=0 Pr[GP ∈ Ωi] = 1.

By Theorem 4.1, we conclude that the stratum design
approach described in Table II is a valid stratification method.

The BSS-II estimator: Similar to BSS-I, we let N be the total
sample size, and Ni be the sample size of Stratum i, and Gi,j

(j = 1, 2, · · · , Ni) be a possible graph sampled from Stratum
i. Then, the BSS-II estimator is given by

Φ̂BSSII =
∑r

i=0
π′
i
1

Ni

∑Ni

j=1
φq(Gi,j), (13)

where π′
i is given in Eq. (12). Similar to Theorem 3.1, the

following theorem shows that BSS-II is unbiased.
Theorem 4.2: E(Φ̂BSSII) = Φq(G).
The variance of BSS-II is given by

var(Φ̂BSSII) =
∑r

i=0
π′
i
2
σi/Ni, (14)
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where σi denotes the variance of the sample in Stratum i.

Sample allocation: Similar to the sample allocation approach
used in BSS-I, for BSS-II, we set the sample size of Stratum
i to π′

iN , i.e., Ni = π′
iN . Based on this sample allocation

method, we show that the variance of BSS-II is no larger than
the variance of NMC.

Theorem 4.3: If Ni = π′
iN , var(Φ̂BSSII) ≤ var(Φ̂NMC ).

With the stratification and sample allocation methods, we
can easily present the BSS-II algorithm. Due to space limit,
we omit the details and refer the readers to [13]. It is worth
mentioning that the edge-selection strategies used in the BSS-I
algorithm can also be used in the BSS-II algorithm. In addition,
one can easily derive that the time complexity of BSS-II is
O(N(m+M)).

B. Recursive stratified sampling (RSS-II)

Based on BSS-II, we develop another new recursive strati-
fied sampling estimator (RSS-II). Similar to the idea of RSS-I,
RSS-II makes use of BSS-II as a building block and recursively
applies BSS-II in each stratum. More specifically, RSS-II first
partitions the probability space Ω into r + 1 subspace Ωi

(i = 0, 1, · · · , r) by the stratification method used in BSS-II.
Then, the same partition procedure is recursively performed
in each subspace Ωi. In each partition, RSS-II utilizes the
sample allocation method used in BSS-II to allocate the sample
size. The recursion process of RSS-II will terminate until the
sample size is smaller than a given threshold (τ ) or the number
of unsampled edges is smaller than r. Likewise, RSS-II is
unbiased and its variance is no larger than that of BSS-II.
Also, we can derive that the time complexity of the RSS-II
algorithm is O(N(m+M)) using the recursive tree technique.
The detailed description of the RSS-II algorithm and the time
complexity analysis can be found in [13].

V. CUT-SET BASED ESTIMATORS

In this section, we propose two cut-set based estimators to
further improve the accuracy of our class-I and class-II estima-
tors for a kind of problem where the query evaluation function
has a so-called cut-set property. Below, we first present a
new sampling algorithm called focal sampling which forms
a building block for developing the cut-set based estimators.

A. Focal sampling

First, we define the cut-set for a query evaluation function.
Definition 5.1: Given an uncertain graph G = (V,E, P ), a

query q, and a query evaluation function φq(G), the cut-set C
is a strict subset of edges (i.e., C ⊂ E) such that φq(G) is a
constant for all the possible graphs G with all edges in C are
failed (i.e., their statuses are zeros).

A query evaluation function φq(G) has a cut-set property
if and only if there is a cut-set C satisfying the above
definition. According to Definition 5.1, for a query q, we can
partition the probability space Ω into two subspaces denoted
by Ω0 and Ω̄0 based on the cut-set C. Here Ω0 is a set
of all the possible graphs such that for any possible graph
G = (VG, EG) ∈ Ω0 we have EG ∩ C = ∅, and Ω̄0 = Ω\Ω0.

TABLE III
STRATUM DESIGN OF CUT-SET BASED ESTIMATORS

Edges e1 e2 e3 · · · e|C| e|C|+1 · · · em Prob. Space
Stratum 1: 1 ∗ ∗ · · · ∗ ∗ · · · ∗ Ω1

Stratum 2: 0 1 ∗ · · · ∗ ∗ · · · ∗ Ω2

Stratum 3: 0 0 1 · · · ∗ ∗ · · · ∗ Ω3

· · · · · · · · ·
Stratum |C| : 0 0 0 · · · 1 ∗ · · · ∗ Ω|C|

Let C = {e1, e2, · · · , e|C|}, then the probability of a possible
graph G in Ω0 is given by

Pr[G ∈ Ω0] = πc
0 =

∏|C|
j=1

(1− pj), (15)

and the probability of G ∈ Ω̄0 is given by π̄c
0 = 1−πc

0. Assume
that for any possible graph G ∈ Ω0, φq(G) = u0 is a constant
and can be easily calculated. Then, to evaluate Φq(G), we do
not need to draw samples from Ω0. Instead, we can focus on
picking samples from Ω̄0. Based on this idea, we propose the
focal sampling (FS) estimator Φ̂FS as follows

Φ̂FS = πc
0u0 + π̄c

0

∑N

i=1
φq(Gi)/N, (16)

where N is the sample size and Gi is a possible graph
drawn from Ω̄0. The following theorem shows that Φ̂FS is
an unbiased estimator of Φq(G).

Theorem 5.2: E(Φ̂FS) = Φq(G).
Let ū0 and σ̄0 be the expectation and variance of the sam-

ples in Ω̄0 respectively. Theorem 5.3 shows that the variance
of the FS estimator (Φ̂FS) is no larger than that of the NMC
estimator.

Theorem 5.3: var(Φ̂FS) ≤ var(Φ̂NMC ).
By Theorem 5.2 and Theorem 5.3, we conclude that the FS

estimator is a more accurate unbiased estimator than NMC.

B. The BCSS estimator

Recall that in the FS estimator, we need to draw samples
from Ω̄0 by NMC. To further reduce its variance, we propose a
basic cut-set based stratified sampling estimator (BCSS), which
uses stratified sampling to draw samples from Ω̄0. Similarly,
there are two key techniques in BCSS: stratification and sample
allocation. Below, we first present the stratification method,
and then describe the sample allocation strategy.

Stratification: First, we divide the probability space Ω̄0 into
|C| subspaces based on the cut-set C, which is denoted by
Ω1, · · · ,Ω|C|. Then, we let each subspace to be a stratum,
i.e., Ωi denotes Stratum i for i = 1, · · · , |C|, and draw sam-
ples separately from each stratum. The detailed stratification
method is given in Table III.

Based on the stratification method, we can easily derive that
for any i �= j, we have Ωi ∩ Ωj = ∅ and

⋃|C|
i=1 Ωi = Ω̄0 =

Ω\Ω0. The probability of a possible graph in Stratum i is given
by

Pr[G ∈ Ωi] = πc
i = pi

∏i−1

j=1
(1− pj), (17)

where i = 1, · · · , |C|. Also, it is easy to show that
∑|C|

i=1
πc
i = 1− πc

0, (18)

where πc
0 is given in Eq. (15).
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Algorithm 3 BCSS (G, N , q)
Input: An uncertain graph G = (V,E, P ), sample size N ,

and a query q

Output: The BCSS estimator Φ̂

1: Φ̂← 0;
2: Compute the cut-set C based on q and φq(G);
3: for i = 1 to |C| do
4: Compute πc

i (Eq. (17)) and πcd
i (Eq. (21));

5: Ni ← [πcd
i N ];

6: t← 0;
7: Let Ei be the set of edges to be determined in Stratum i;
8: for j = 1 to Ni do
9: Flip m − i coins to determine Ei, and thus generate a

possible graph Gj ;
10: Compute φq(Gj);
11: t← t+ φq(Gj);
12: t← t/Ni;
13: Φ̂← Φ̂ + πc

i t;
14: Calculate π0 by Eq. (15) and u0;
15: return Φ̂ + πc

0u0;

The estimator: Let N be the sample size, Ni be the sample
size of Stratum i, and Gi,j be a possible graph drawn from
Stratum i. Then, the BCSS estimator is given by

Φ̂BCSS = πc
0u0 +

∑|C|
i=1

πc
i

∑Ni

j=1
φq(Gi,j)/Ni, (19)

where
∑|C|

i=1 Ni = N . The following theorem shows that Φ̂BCSS

is unbiased.
Theorem 5.4: E(Φ̂BCSS) = Φq(G).

The variance of Φ̂BCSS is given by

var(Φ̂BCSS) =
∑|C|

i=1
(πc

i )
2σi/Ni, (20)

where σi denotes the variance of the sample in Stratum i.

Sample allocation: Here we develop a new sample allocation
strategy for BCSS. First, we define the conditional probability
Pr[G ∈ Ωi|G /∈ Ω0] as follows

Pr[G ∈ Ωi|G /∈ Ω0] = πcd
i =

pi
∏i−1

j=1 (1− pj)

1−∏r
j=1 (1− pj)

, (21)

where i = 1, · · · , |C| and Pr[G ∈ Ωi|G /∈ Ω0] denotes the
probability of sampling a possible graph from Ωi conditioning
on it is not in Ω0. Second, our sample allocation strategy is
given by Ni = πcd

i N for Stratum i. Based on this allocation
strategy, we prove that the variance of Φ̂BCSS is no larger
than that of the FS estimator.

Theorem 5.5: var(Φ̂BCSS) ≤ var(Φ̂FS).

The BCSS algorithm is outlined in Algorithm 3. The time
complexity of Algorithm 3 is O(N(m+M)+T ), where com-
puting the cut-set takes O(T ) time. The detailed description of
the algorithm and the time complexity analysis can be found
in [13]. It is worth mentioning that in many applications the
cut-set can be easily calculated, and the time complexity O(T )
can be dominated by O(m). As a result, the time complexity
of Algorithm 3 is the same as that of NMC.

Algorithm 4 RCSS(G, E1, E2, X , N , S, q)
Input: An uncertain graph G = (V,E, P ), the set of sampled

edges E1, the set of unsampled edges E2, the status
vector of the sampled edges X, the sample size N ,
the answer set S, and the query q

Output: The RCSS estimator Φ̂

1: Φ̂← 0;
2: Compute the cut-set C′ based on S, q and φq(G);
3: Let C = (e1, e2, · · · , e|C|) = C′ ⋂E2;
4: if N < τ1 or |E2| < τ2 or |C| == 0 then
5: for j = 1 to N do
6: Flip |E2| coins to generate a possible graph Gj ;
7: Compute φq(Gj);
8: Φ̂← Φ̂ + φq(Gj);
9: return Φ̂/N ;

10: else
11: Compute πc

0 and u0 based on C and X;
12: for i = 1 to |C| do
13: Compute πc

i (Eq. (17)) and πcd
i (Eq. (21));

14: Ni ← [πcd
i N ];

15: Let Ti = {e1, · · · , ei};
16: Let Xi be the status vector of set Ti under Stratum i;
17: Append Xi to X;
18: R← S; {Record the current answer set S}
19: Update R if any;
20: μi ←RCSS(G, E1 ∪ Ti, E2\Ti, X, Ni, R, q);
21: Φ̂← Φ̂ + πc

iμi;
22: return Φ̂ + πc

0μ0;

C. The RCSS estimator

Similar to RSS-I and RSS-II, the BCSS estimator can also
be recursively applied in each stratum. Based on this idea, we
propose a recursive cut-set based stratified sampling estimator,
named RCSS estimator. The RCSS algorithm is outlined in
Algorithm 4. Note that in each recursion of Algorithm 4,
we maintain an answer set S to record the immediate results
obtained from the previous recursion (line 18-19), and it will
be used to compute the cut-set (line 2). We will describe the
function of the answer set S by two concrete applications in
Section V-E. Likewise, the RCSS estimator is unbiased and its
variance is no larger than that of BCSS. Also, we can show
that the time complexity of Algorithm 4 is O(N(M+m+T ))
by using the recursive tree. In many real-world applications,
O(T ) can be dominated by O(m), thus in these cases the time
complexity of RCSS is the same as that of NMC. Indeed,
in our experiments, we observe that the average query time
of RCSS and NMC are comparable. Due to space limit, the
detailed description of Algorithm 4 and its complexity analysis
are given in [13].

D. Discussion

Here we give a brief discussion of all the proposed estima-
tors. First, recall that the stratification method of BCSS is very
similar to that of BSS-II. The differences between these two
methods are: (1) the stratification method of BCSS is based on
the cut-set while the stratification of BSS-II is based on any
selected r edges, and (2) unlike BSS-II, there is no Stratum 0
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in BCSS. Moreover, we find that if r = |C|, the variance of
BCSS is no larger than that of BSS-II.

Theorem 5.6: If r = |C|, var(Φ̂BCSS) ≤ var(Φ̂BSSII).
Theorem 5.6 implies that the BCSS estimator reduces the

variance of BSS-II under the condition of |C| = r. Note that
it is very hard to compare the variance of BCSS and BSS-
II for |C| �= r because in this case the strata of these two
methods are totally different. By the same reason, it is also
very hard to compare the variance of BCSS and BSS-I and
compare the variance of RCSS, RSS-I, and RSS-II. Notice
that the class-I and class-II estimators are very general which
do not depend on the graph structure and the property of
query evaluation function. However, both the BCSS and RCSS
estimators exploit the graph structure and the cut-set property
of the query evaluation function, thus these estimators can be
deemed as data-driven methods where the stratification meth-
ods are driven by the cut-set. In our experiments, we show that
the performance of such data-driven methods are significantly
better than those of the class-I and class-II estimators.

E. Two applications

In this subsection, we introduce two applications, the influ-
ence function evaluation problem [8], [11] and the expected-
reliable distance query problem [2] to illustrate the idea of
BCSS and RCSS estimators. Note that the proposed class-I
(BSS-I and RSS-I) and class-II (BSS-II and RSS-II) estimators
can be directly used for these two query evaluation problems.
Here we focus on using the BCSS and RCSS estimators for
these problems.

Influence function evaluation: Given an uncertain graph G
and a seed set A, the influence function evaluation problem is a
problem of computing the expected number of nodes in G that
are reachable from the seed set A. This problem plays a crucial
role in influence maximization problem in social networks [8],
[11]. To simplify our presentation, we consider a very special
case that the seed set only contains one node, i.e., |A| = 1.
For the general case (|A| > 1), the problem can be easily
converted to the problem with only one seed node. This is
because we can add a virtual node q and |A| edges from
q to each node in A with probability 1, then the influence
function evaluation problem with seed set A is equivalent to
the problem with seed node q. Clearly, such a problem is
an instance of our expectation query evaluation problem. The
query is a seed node, and the query evaluation function on a
possible graph G, i.e., φq(G), denotes the number of nodes that
are reachable from the seed node q in G. The query evaluation
function can be calculated by the BFS algorithm. Beyond the
influence function evaluation problem, here we also introduce
the threshold influence function evaluation problem. In partic-
ular, given an uncertain graph G, a seed node q, a threshold
δ, the threshold influence function evaluation problem aims
at estimating the probability of φq(G) ≥ δ for a possible
graph G. In the following, we focus on the influence function
evaluation problem. The algorithm can be easily generalized
to the threshold influence function evaluation problem because
we only need to replace φq(G) by I(φq(G) ≥ δ).

Recall that in the BCSS and RCSS estimators, the key issue
is to find the cut-set. For the influence function evaluation
problem, we define the cut-set as the set of all the outgoing
edges of the query node q. This is because if all the outgoing
edges of q are failed then there is no node that is reachable
from q, thereby φq(G) is a constant 0, satisfying the definition
of cut-set. For example, in Fig. 1(a), assume that q = v1, then
the cut-set C is {v1 → v2, v1 → v3}. Note that the cut-set is
not unique. For the influence function evaluation problem, the
set of all the outgoing edges is the minimal cut-set. Adding
any one edge in such a set is still a cut-set if the resulting set
is not the entire edge set E.

After defining the cut-set, we can apply the BCSS estimator
to the influence function evaluation problem. We only need to
modify two lines (line 2 and line 10) in Algorithm 3 for the
influence function evaluation problem. Specifically, in line 2,
we get the cut-set by extracting all the outgoing edges of
q. In line 10, we compute φq(Gj) by the BFS algorithm.
Notice that in this problem u0 is equivalent to 0. The detailed
algorithm is omitted for brevity. The time complexity of the
BCSS estimator for the influence function evaluation problem
is O(Nm). The reason is because the time complexity for
computing φq(Gj) and C is dominated by O(m). Below,
we focus on using RCSS estimator for influence function
evaluation.

According to Algorithm 4, the key problem in the RCSS
estimator is how to calculate the cut-set C and u0 in each
recursion. To overcome this issue, we resort to the answer
set S (an input parameter in Algorithm 4). For influence
function evaluation, the answer set S records both the query
node q and the nodes that are reachable from q until the
current recursion. Based on the answer set S, the cut-set |C|
can be easily determined by the union of all the unsampled
outgoing edges of the nodes in S, i.e., C = (

⋃
v∈S Ov)

⋂
E2,

where Ov denotes the set of all the outgoing edges of node
v and E2 denotes the unsampled edge set (the statuses of
the edges in E2 are “∗”). We can easily derive that u0 is
equivalent to |S|− 1, because until current recursion there are
|S| − 1 nodes that are reachable from q. Consider an example
in Fig. 1(a), assume that the query node is v1, the current
recursion depth is 2, and the status vector of the sampled
edges (i.e., (v1 → v2, v1 → v3)) is X = (0, 1). Then, under
the current recursion, the answer set S equals to {v1, v3},
the unsampled edge set E2 = {v2 → v1, v3 → v4, v4 →
v1, v2 → v4, v4 → v5, v5 → v2}. Given this, the cut-set C is
C = (

⋃
v∈S Ov)

⋂
E2 = {v3 → v4}, and u0 = |S| − 1 = 1.

Besides, in each recursion, we need to update the answer set S
for the next recursion. Recall that by our stratification method,
there is only one edge in the cut-set that will exist in the next
recursion. For convenience, we refer to such an edge as the
active edge. Therefore, we only need to add the head endpoint
node2 of the active edge into the answer set S.

For the algorithm, we only need to modify three lines in
Algorithm 4. Specifically, in line 2, we compute the cut-set C′

2Here we assume the graph is directed without loss of generality.

899



by extracting the union of all the unsampled outgoing edges
of the nodes in S. In line 7, we compute φq(Gj) by the BFS
algorithm. In line 19, we update the answer set by adding the
head endpoint node of the active edge into the answer set. For
computing u0, we set it to |S| − 1. Due to space limit, the
detailed algorithm is given in [13]. The time complexity of
this algorithm is O(Nm), because computing φq(Gj) and C
takes O(m) time.

Expected-reliable distance query: The expected-reliable dis-
tance is an important measure for k-nearest neighbor query
on uncertain graphs [2]. Given an uncertain graph G and two
query nodes s and t, the expected-reliable distance query is to
estimate

Φs,t(G) =
∑

G∈Ω\Ω∞
Pr[G]φs,t(G)/(1− Pr[G ∈ Ω∞]), (22)

where φs,t(G) is the query evaluation function representing
the length of the shortest path from s to t (the distance from s
to t), and Ω∞ denotes the probability space in which s cannot
reach t, i.e., φs,t(G) = ∞ for G ∈ Ω∞. Besides the expected-
reliable distance query problem, we also study its threshold
counterpart. More specifically, given an uncertain graph G,
two query nodes s and t, and a threshold δ, the threshold
expected-reliable distance query is to estimate the probability
of φs,t(G) ≤ δ for a possible graph G. Since the algorithm for
the threshold expected-reliable distance query is very similar
to the algorithm for the expected-reliable distance query, we
focus on the expected-reliable distance query.

For completeness, we describe the NMC estimator for
Φs,t(G). In particular, the NMC estimator first draws N
possible graphs G1, · · · , GN . Second, for each possible graph
Gi, the NMC estimator computes the distance from s to t
(φs,t(Gi)) by the BFS algorithm3. Suppose without loss of
generality that in the first N ′ (N ′ ≤ N ) possible graphs the
distance from s to t is finite and in the rest N −N ′ possible
graphs the distance is infinity. Then, the NMC estimator is
given by Φ̂NMC =

∑N ′

i=1 φs,t(Gi)/N
′.

Below, we make use of the BCSS and RCSS estimators for
estimating Φs,t(G). The key issue for the BCSS and RCSS
estimator is to define the cut-set. For the BCSS estimator, we
define the cut-set C as the set of all the outgoing edges of
node s. The reason is because if all the outgoing edges of s
are failed, then the distance from s to t is a constant which
is infinity. Note that if the cut-set C is an empty set, then we
definitely know that s cannot reach t, thereby we do not need to
do any sampling process. Reconsider the example in Fig. 1(a),
assume that s = v1 and t = v5, then the cut-set C = {v1 →
v2, v1 → v3}. Clearly, if both v1 → v2 and v1 → v3 are failed,
then node v1 cannot reach node v5. Based on the cut-set C, we
can use the BCSS estimator for the expected-reliable distance
query problem. The algorithm is very similar to Algorithm 3,
a notable difference is that in line 15 of Algorithm 3 we do not
need to add πc

0u0 to Φ̂, because u0 = ∞. For brevity, we omit
the detailed description of the algorithm. The time complexity

3Here we assume that the graph is un-weighted and directed, thus we can
use BFS to compute the shortest path.

of the BCSS estimator is O(Nm), because computing the cut-
set takes O(|C|) time complexity and calculating φs,t(G) by
the BFS algorithm takes O(m) time complexity.

For the RCSS estimator, the important steps are to compute
the cut-set C and u0 in each recursion. In the expected-reliable
distance query problem, u0 always equals ∞. For the cut-set
C, we use the answer set S to calculate it. Recall that in each
recursion, according to our stratification method, there is only
one new edge will exist in the next recursion. Similarly, we
refer to such an edge as the active edge. We set the answer
set S be a set containing only one node which is the head
endpoint node of the active edge. Based on the answer set S,
we let the cut-set C be the set of unsampled outgoing edges
of the node in S, i.e., C = OS

⋂
E2, where OS denotes the

set of all the outgoing edges of the node in S. Consider an
example in Fig. 1(a), suppose that s = v1, t = v5, the current
recursion depth is 2, and the status vector of the sampled edges
(i.e., (v1 → v2, v1 → v3)) is X = (0, 1). Then, in the current
recursion, the answer set S is {v3}, the unsampled edge set
E2 = {v2 → v1, v3 → v4, v4 → v1, v2 → v4, v4 → v5, v5 →
v2}. Given this, the cut-set C is C = OS

⋂
E2 = {v3 → v4}.

In each recursion, we can easily update the answer set S by
the head endpoint node of the active edge. In this example, the
active edge is v3 → v4, and for the next recursion we update
the answer set S by {v4}.

For the algorithm description, it is similar to that of Al-
gorithm 4. Two major differences include: (1) computing the
cut-set (in line 2 of Algorithm 4), and (2) updating the answer
set (line 19 of Algorithm 4). Specifically, we compute the cut-
set by extracting the unsampled outgoing edges of the node
in S, and update the answer set by the head endpoint node
of the active edge. Due to space limit, the detailed algorithm
is given in [13]. Also, we can easily derive that the time
complexity of this algorithm is O(Nm). This is because the
time complexity for computing φs,t(G) and calculating the
cut-set C is dominated by O(m).

VI. EXPERIMENTS

A. Experimental setup

Datasets: We use one synthetic dataset and three real-world
datasets in our experiments. We apply the same parameters
used in [3] to generate the synthetic dataset. In particular, we
first generate an Erdos-Renyi (ER) random graph with 5,000
vertices and 50,616 edges. Then, for each edge, we generate
a probability according to a [0,1] uniform distribution. The
three real-world datasets are as follows. (1) Facebook dataset:
this dataset originates from a Facebook social network for
students at University of California, Irvine. It contains the
users who sent or received at least one message. We collect
this dataset from (toreopsahl.com/datasets). The dataset is a
weighted graph, and the weight of each edge denotes the num-
ber of messages passing over the edge. (2) Condmat dataset:
this dataset is a weighted collaboration network, where the
weight of an edge represents the number of co-authored papers
between two collaborators. We download this dataset from
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TABLE IV
SUMMARY OF THE DATASETS

Name Nodes Edges Ref.
ER 5,000 50,616 [3]
Facebook 1,899 20,296 [16]
Condmat 16,264 95,188 [17]
DBLP 78,648 376,515 [15]

(www-personal.umich.edu/∼mejn/netdata). (3) DBLP dataset:
this dataset is also a weighted collaboration network, where
the weight of the edge signifies the number of co-authored
papers. This dataset is provided by the authors in [15]. Table
IV summarizes the detailed information of our datasets. To
obtain the uncertain networks, for each real-world dataset, we
generate the probabilities according to the same method used in
[2], [3]. Specifically, to generate the probability of an edge, we
apply an exponential cumulative distribution function (CDF)
with mean 2 to the weight of the edge.

Different estimators: In our experiments, we compare 12
different estimators. The first two estimators are served as
the baselines, and the last ten estimators are our proposed
estimators. The different estimators are summarized as follows.
(1) NMC, which is the naive Monte-Carlo estimator. (2)
RSSIR1, which is a special RSS-I estimator with random
(RM) edge-selection strategy and with parameter r = 1. This
estimator is presented in [3] for computing distance-constraint
reachability on uncertain graphs. In this paper, we generalize
this estimator to arbitrary parameter r (the RSS-I estimator),
and apply the generalized estimator for the general query
evaluation problem. Recall that beyond RM edge-selection
strategy, we also propose a more accurate RSS-I estimator
with BFS edge-selection strategy for a kind of query evaluation
problem. (3) BSSIR and BSSIB, which are the BSS-I estimator
with RM and BFS edge-selection respectively. (4) RSSIR and
RSSIB, which are the RSS-I estimator with RM and BFS
edge-selection respectively. (5) BSSIIR and RSSIIR, which
are the BSS-II estimator with RM and BFS edge-selection
respectively. (6) RSSIIR and RSSIIB, which are the RSS-II
estimator with RM and BFS edge-selection respectively. (7)
BCSS and RCSS, which are the cut-set based estimators (i.e.,
BCSS and RCSS).

Evaluation metric: Two metrics are used to evaluate the
performance of different estimators: average query time and
relative variance. The average query time evaluates the effi-
ciency of the estimators. The relative variance is leveraged
to evaluate the accuracy of the estimators. Let σNMC be
the variance of the NMC estimator. We calculate the relative
variance of an estimator Φ̂ by σΦ̂/σNMC . Since computing the
exact variance of an estimator is intractable, we resort to an
unbiased estimator of the variance. Similar evaluation metric
has been used in [3] for the distance-constraint reachability
problem. Specifically, to get the unbiased estimator of the
variance, we run each estimator (Φ̂i(G)) 500 times. Then, the
unbiased estimator of the variance is obtained by

∑500

i=1
(Φ̂i(G)− Φ̄i(G))2/499,

in which Φ̄i(G) denotes the mean of Φ̂i(G) (i = 1, · · · , 500).
Parameter settings and experimental environment: With-

out specifically stated, in all the experiments, we set the pa-
rameters as follows. For all estimators, we set the sample size
N = 1000. For the BSS-I and RSS-I estimators, we set r = 5,
and for the BSS-II and RSS-II estimators, we set r = 50,
because under this setting these estimators perform very well.
In [13], we have studied the effect of r in these estimators.
For the threshold parameter τ in RSS-I and RSS-II estimators,
we set τ = 10, and for the threshold parameters in RCSS
estimator we set τ1 = 10 and τ2 = 10. All the experiments are
conducted on a Scientific Linux 6.0 workstation with 2xQuad-
Core Intel(R) 2.66 GHz CPU, and 4G memory. All algorithms
are implemented in C++.

B. Results on influence function evaluation

We report the experimental results for influence function
evaluation problem. For the results of threshold influence func-
tion evaluation, we refer readers to [13]. In all the experiments,
we randomly generate 1000 query nodes, and the results are
the average result over all the queries.

Table V depicts the accuracy of different estimators. As can
be seen, the RCSS estimator (RCSS) significantly outperforms
the other competitors over all the datasets. In general, for
the proposed estimators, the recursive estimators (RSSIR,
RSSIB, RSSIIR, RSSIIB, and RCSS) outperform the basic
estimators (BSSIR, BSSIB, BSSIIR, BSSIIB, and BCSS). For
the proposed class-I and class-II estimators, we can find that
the estimators with BFS edge-selection strategy are better than
the estimators with RM edge-selection strategy. These results
are consistent with our analysis in Section III and Section IV.
In addition, we observe that all of our recursive estimators are
significantly better than the state-of-the-art RSSIR1 estimator.
For example, in Condmat dataset, RSSIR, RSSIB, RSSIIR,
RSSIIB, and RCSS cut the relative variance of RSSIR1 by
62.9%, 303.5%, 62.6%, 275.0% and 482.3% respectively.
Moreover, we can find that the basic class-I and class-II
estimators are slightly worse than the RSSIR1 estimator, but
they are still significantly better than the NMC estimator.
Interestingly, we find that the basic cut-set based stratified
sampling estimator (BCSS) consistently outperforms the state-
of-the-art RSSIR1 estimator, and it is even better than the
recursive estimators with RM edge-selection strategy in most
datasets. The reason could be that BCSS captures the graph
structure information and the cut-set property of the query
evaluation function while the recursive estimators with RM
strategy do not incorporate any structure information of the
graph. For the efficiency of different estimators, we report the
results in Table VI. We can see that the average query time of
all the estimators are comparable in each dataset. These results
confirm the time complexity analysis presented in the previous
sections.

C. Results on expected-reliable distance query

Here we report the results of expected-reliable distance
query. For the results of threshold expected-reliable distance
query, we refer readers to [13]. In all the experiments, we
randomly generate 1000 query node-pairs (s, t), the results
are the average result over all the queries.
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TABLE V
INFLUENCE FUNCTION EVALUATION: COMPARISON OF RELATIVE VARIANCE (RV) OF DIFFERENT ESTIMATORS

RV NMC RSSIR1 BSSIR BSSIB RSSIR RSSIB BSSIIR BSSIIB RSSIIR RSSIIB BCSS RCSS
ER 1.000 0.672 0.943 0.894 0.340 0.205 0.932 0.904 0.351 0.206 0.218 0.153
Facebook 1.000 0.559 0.890 0.682 0.302 0.257 0.695 0.667 0.279 0.240 0.324 0.168
Condmat 1.000 0.795 0.907 0.853 0.488 0.197 0.855 0.842 0.489 0.212 0.242 0.137
DBLP 1.000 0.538 0.917 0.837 0.210 0.192 0.945 0.800 0.200 0.182 0.205 0.125

TABLE VI
INFLUENCE FUNCTION EVALUATION: COMPARISON OF AVERAGE QUERY TIME OF DIFFERENT ESTIMATORS (IN SECOND)

Time NMC RSSIR1 BSSIR BSSIB RSSIR RSSIB BSSIIR BSSIIB RSSIIR RSSIIB BCSS RCSS
ER 0.359 0.356 0.350 0.375 0.337 0.378 0.363 0.375 0.372 0.385 0.368 0.396
Facebook 0.201 0.201 0.233 0.235 0.200 0.201 0.225 0.228 0.203 0.204 0.216 0.235
Condmat 1.297 1.296 1.304 1.305 1.205 1.241 1.251 1.310 1.226 1.228 1.297 1.306
DBLP 8.582 8.654 8.629 8.817 8.383 8.593 8.883 9.131 8.684 8.705 9.583 9.628

The expected-reliable distance query results are described
in Table VII. From Table VII, we can see that RCSS achieves
the best performance, followed by the proposed recursive
estimators (RSSIR, RSSIB, RSSIIR, and RSSIIB), RSSIR1,
the proposed basic estimators (BCSS, BSSIR, BSSIB, BSSIIR,
and BSSIIB), and NMC. Similar to the results of the influence
function evaluation, the proposed recursive estimators with
BFS edge-selection strategy (RSSIB and RSSIIB) outperform
the recursive estimators with RM strategy. It is also worth
mentioning that all of our recursive estimators are significantly
better than the state-of-the-art RSSIR1 estimator. For example,
in Condmat dataset, RSSIR, RSSIB, RSSIIR, RSSIIB and
RCSS reduce the relative variance of RSSIR1 by 16.3%,
17.3%, 15.6%, 18.0%, and 132.9% respectively. In addition,
from Table VIII, we can observe that the average query time of
all the estimators are comparable. These results further confirm
our theoretical analysis in the previous sections.

D. Scalability

To study the scalability of various estimators, we generate
four large synthetic uncertain graphs with the number of nodes
ranging from 200,000 (200k) to 800,000 and the number of
edges ranging from 800,000 to 3,200,000 (3.2m) according to
the same parameter setting described in Section VI-A. Also,
for each estimator, we set the same parameter setting as our
previous experiments. Fig. 2(a) and Fig. 2(b) depict the average
query time of various estimators for the influence function
evaluation and expected-reliable distance query respectively. In
Fig. 2, the two numbers in the horizontal axis (eg. 200k/800k)
denote the number of nodes and the number of edges re-
spectively. From Fig. 2, we find that the average query time
increases as the graph size increases. Generally, the average
query time of all the estimators are comparable, and all the
estimators exhibit a linear growth w.r.t. the graph size. These
results demonstrate that all the estimators scale linearly w.r.t.
the graph size, which are consistent with the time complexity
of the estimators.

E. Effect of sample size

As shown in the previous experiments, RCSS, RSSIB,
and RSSIIB outperform the other estimators. Here we study
how the sample size affects the estimating accuracy of these
estimators in Condmat dataset. Similar results can also be
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observed in the other datasets. Fig. 3 shows the relative
variance of the estimators under different sample sizes. As
can be observed, the curves of RCSS, RSSIB, and RSSIIB
are very smooth when the sample size is no less than 1000,
which indicate that the relative variance of these estimators are
relatively robust w.r.t. the sample size.

VII. RELATED WORK

Uncertain graph management and mining has been attracted
much attention due to the increasing applications in biological
database [18], communication networks [7], and influence
networks [8]. Notable work on uncertain graph management
and mining consists of finding the reliable subgraph in a
large uncertain graph [19], [4], frequent subgraph mining in
uncertain graph database [1], [20], subgraph search in large
uncertain graph [21], K-nearest neighbor search in uncertain
graph [2], and distance constraint reachability computation in
uncertain graph [3]. Generally, all the mentioned uncertain
graph problems are known to be #P-complete, thus finding
the exact solution is impossible in large uncertain graphs.
Therefore, most existing work, such as [2] and [4], are based
on the NMC estimator. Generally, NMC leads to a large
variance, thus reducing the accuracy of the algorithms. In
this paper, we develop several accurate estimators without
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TABLE VII
EXPECTED-RELIABLE DISTANCE QUERY: COMPARISON OF RELATIVE VARIANCE (RV) OF DIFFERENT ESTIMATORS

RV NMC RSSIR1 BSSIR BSSIB RSSIR RSSIB BSSIIR BSSIIB RSSIIR RSSIIB BCSS RCSS
ER 1.000 0.772 0.921 0.913 0.682 0.679 0.923 0.920 0.678 0.675 0.908 0.398
Facebook 1.000 0.759 0.932 0.925 0.651 0.648 0.934 0.931 0.653 0.650 0.921 0.356
Condmat 1.000 0.815 0.916 0.909 0.701 0.695 0.912 0.909 0.705 0.691 0.903 0.350
DBLP 1.000 0.756 0.924 0.917 0.697 0.683 0.920 0.915 0.689 0.680 0.901 0.515

TABLE VIII
EXPECTED-RELIABLE DISTANCE QUERY: COMPARISON OF AVERAGE QUERY TIME OF DIFFERENT ESTIMATORS (IN SECOND)

Time NMC RSSIR1 BSSIR BSSIB RSSIR RSSIB BSSIIR BSSIIB RSSIIR RSSIIB BCSS RCSS
ER 0.405 0.422 0.408 0.410 0.428 0.431 0.406 0.410 0.425 0.427 0.412 0.453
Facebook 0.210 0.231 0.214 0.216 0.235 0.216 0.217 0.233 0.235 0.236 0.218 0.241
Condmat 1.383 1.387 1.385 1.383 1.389 1.401 1.386 1.388 1.405 1.408 1.400 1.410
DBLP 11.33 11.41 11.35 11.37 11.45 11.46 11.35 11.36 11.40 11.43 11.40 11.48

sacrificing efficiency for the query evaluation problems on
uncertain graphs.

Our work is also related to the query evaluation problem
in uncertain database [22]. In [23], Dalvi, et al. proposed a
framework to support arbitrarily SQL query with uncertain
predicates. Subsequently, in [24], Christopher, et al. proposed
a Monte-Carlo based method for top-K query evaluation on
uncertain database. More recently, Li, et al. [25] proposed
a unified approach for top-K query processing in uncertain
database. Note that the techniques for query evaluation in
uncertain database cannot be directly used in uncertain graphs.
The reason is as follows. Generally, in uncertain database,
sampling a possible word takes constant time complexity, while
in uncertain graphs, sampling a possible graph is a time-
consuming step which takes O(m) time complexity. Therefore,
for the query evaluation in uncertain graphs, the key issue is
to reduce the number of samples for the estimators. To reduce
the sample size of the estimator, one effective solution is to
reduce its variance. To that end, in this paper, we propose
several recursive stratified sampling estimators, and we show
that the variance of our estimators are significantly smaller
than those of the existing estimators.

VIII. CONCLUSION

In this paper, we introduce two types of query evaluation
problems on uncertain graphs. To solve these problems, we
propose several efficient and accurate estimators based on
stratified sampling. We show that all of our estimators are
unbiased and their variances are smaller than that of the state-
of-the-art estimator. Moreover, the time complexity of all the
proposed estimators are the same as that of the state-of-the-
art estimator. We conduct extensive experiments to evaluate the
proposed estimators. The results demonstrate the effectiveness,
efficiency, and scalability of our estimators.
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